Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater Technol ; 8(16)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283881

RESUMO

Microfluidic devices have been used for decades to isolate cells, viruses, and proteins using on-chip immunoaffinity capture using biotinylated antibodies, proteins, or aptamers. To accomplish this, the inner surface is modified to present binding moieties for the desired analyte. While this approach has been successful in research settings, it is challenging to scale many surface modification strategies. Traditional polydimethylsiloxane (PDMS) devices can be effectively functionalized using silane-based methods; however, it requires high labor hours, cleanroom equipment, and hazardous chemicals. Manufacture of microfluidic devices using plastics, including cyclic olefin copolymer (COC), allows chips to be mass produced, but most functionalization methods used with PDMS are not compatible with plastic. Here we demonstrate how to deposit biotin onto the surface of a plastic microfluidic chips using aryl-diazonium. This method chemically bonds biotin to the surface, allowing for the addition of streptavidin nanoparticles to the surface. Nanoparticles increase the surface area of the chip and allow for proper capture moiety orientation. Our process is faster, can be performed outside of a fume hood, is very cost-effective using readily available laboratory equipment, and demonstrates higher rates of capture. Additionally, our method allows for more rapid and scalable production of devices, including for diagnostic testing.

2.
J Extracell Vesicles ; 10(4): e12062, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33643547

RESUMO

We present a resource-efficient approach to fabricate and operate a micro-nanofluidic device that uses cross-flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV-specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro-nanofluidic device integrates the unit operations of size-based separation with CD63 antibody immunoaffinity-based capture of extracellular vesicles in the same device to evaluate EV-cargo content for liposarcoma. The eluted media collected showed ∼76% extracellular vesicle recovery from the liposarcoma cell conditioned media and ∼32% extracellular vesicle recovery from dedifferentiated liposarcoma patient serum when compared against state-of-art extracellular vesicle isolation and subsequent quantification by ultracentrifugation. The results reported here also show a five-fold increase in amount of critical liposarcoma-relevant extracellular vesicle cargo obtained in 30 min presenting a significant advance over existing state-of-art.


Assuntos
Vesículas Extracelulares/química , Filtração/métodos , Lipossarcoma/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Biomarcadores , Linhagem Celular Tumoral , Humanos , Neoplasias Lipomatosas/química , Ultracentrifugação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...